Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.287
Filtrar
1.
Theriogenology ; 224: 1-8, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38714023

RESUMEN

In mammals, glial cell derived neurotrophic factor (GDNF) plays a critical role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) in testis and oogenesis in ovary, whilst retinoic acid (RA), the key factor of meiosis initiation, can downregulate its expression. Unlike mammals, two Gdnf replication genes are widely present in teleost fishes, however, our understanding of them is still poor. In the present study, two paralogous gdnf from Nile tilapia (Oreochromis niloticus), namely as Ongdnfa and Ongdnfb, were characterized, and then their cellular expression profiles in testis and ovary and responsiveness to RA treatment at the tissue and cellular levels were investigated. In phylogenetic tree, the Gdnfa and Gdnfb from teleost fishes were clustered into two different subclasses, respectively, and then clustered with the homologs from cartilaginous fish and tetrapods, suggesting that OnGdnfa and OnGdnfb are orthologous to GDNF and paralogous to each other. Ongdnfa is expressed in Sertoli cells and Leydig cells in testis and oocytes in ovary. The expression pattern of Ongdnfb is similar to Ongdnfa. In the ex vivo testicular organ culture, RA down-regulated the expression of Ongdnfa, whereas up-regulated the expression of Ongdnfb (P < 0.05), suggesting that they have differential responsiveness to RA signaling. RA treatment of the cultured cells derived from adult Nile tilapia testis which have the expression of RA receptors (RAR), Ongdnfa and Ongdnfb further confirmed the above result. Collectively, our study suggests that Ongdnfa and Ongdnfb have non-germline expression patterns in testis and germline expression patterns in ovary; furthermore, they have differential responsiveness to RA signaling, implying that they might have differential biological functions. This study broadens and enriches our understanding of fish GDNF homologs and lays foundation for the study of their biological functions in the future.

2.
Mater Today Bio ; 26: 101073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711935

RESUMEN

Spider silks are natural protein-based biomaterials which are renowned for their mechanical properties and hold great promise for applications ranging from high-performance textiles to regenerative medicine. While some spiders can produce several different types of silks, most spider silk types - including pyriform and aciniform silks - are relatively unstudied. Pyriform and aciniform silks have distinct mechanical behavior and physicochemical properties, with materials produced using combinations of these silks currently unexplored. Here, we introduce an engineered chimeric fusion protein consisting of two repeat units of pyriform (Py) silk followed by two repeat units of aciniform (W) silk named Py2W2. This recombinant ∼86.5 kDa protein is amenable to expression and purification from Escherichia coli and exhibits high α-helicity in a fluorinated acid- and alcohol-based solution used to form a dope for wet-spinning. Wet-spinning enables continuous fiber production and post-spin stretching of the wet-spun fibers in air or following submersion in water or ethanol leads to increases in optical anisotropy, consistent with increased molecular alignment along the fiber axis. Mechanical properties of the fibers vary as a function of post-spin stretching condition, with the highest extensibility and strength observed in air-stretched and ethanol-treated fibers, respectively, with mechanics being superior to fibers spun from either constituent protein alone. Notably, the maximum extensibility obtained (∼157 ± 38 %) is of the same magnitude reported for natural flagelliform silks, the class of spider silk most associated with being stretchable. Interestingly, Py2W2 is also water-compatible, unlike its constituent Py2. Fiber-state secondary structure correlates well with the observed mechanical properties, with depleted α-helicity and increased ß-sheet content in cases of increased strength. Py2W2 fibers thus provide enhanced materials behavior in terms of their mechanics, tunability, and fiber properties, providing new directions for design and development of biomaterials suitable and tunable for disparate applications.

3.
Int J Surg ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716876

RESUMEN

BACKGROUND: Previous trials confirmed the benefit of endovascular treatment (EVT) in acute large core stroke, but the effect of EVT on outcomes in these patients based on non-contrast computed tomography (NCCT) in real-world clinical practice was unclear. The aim of this study was to explore the effect of EVT versus standard medical treatment (SMT) in patients with large ischemic core stroke defined as Alberta Stroke Program Early CT Score (ASPECTS)≤5 based on NCCT alone. MATERIALS AND METHODS: Patients with acute large core stroke at 38 Chinese centers between November 2021 and February 2023 were reviewed from prospectively maintained databases. The primary outcome was favorable functional outcome (modified Rankin Scale score [mRS], 0-3) at 90 days. Safety outcomes included 48-hour symptomatic intracerebral hemorrhage (sICH) and 90-day mortality. RESULTS: Of 745 eligible patients recruited at 38 stroke centers between November 2021 and February 2023, 490 were treated with EVT and 255 with SMT alone. One hundred and eighty-one (36.9%) in the EVT group achieved favorable functional independence versus 48 (18.8%) treated with SMT only (adjusted risk ratio [RR], 1.86; 95% CI, 1.43 to 2.42, P<0.001; adjusted risk difference [RD], 13.77; 95% CI, 7.40 to 20.15, P<0.001). The proportion of sICH was significantly higher in patients undergoing EVT (13.3% vs. 2.4%; adjusted RR, 5.17; 95% CI, 2.17 to 12.32, P<0.001; adjusted RD, 10.10; 95% CI, 6.12 to 14.09, P<0.001). No significant difference of mortality between the groups was observed (41.8% vs. 49.0%; adjusted RR, 0.91; 95% CI, 0.77 to 1.07, P=0.24; adjusted RD, -5.91; 95% CI, -12.91 to 1.09, P=0.1). CONCLUSION: Among patients with acute large core stroke based on NCCT in real world, EVT is associated with better functional outcomes at 90 days despite of higher risk of sICH. Rates of procedure-related complications were high in the EVT group.

4.
JAMA Netw Open ; 7(5): e249298, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696171

RESUMEN

Importance: The association of endovascular therapy (EVT) with outcomes is unclear for patients with very low Alberta Stroke Program Early Computed Tomography Score (ASPECTS) within 24 hours of stroke onset. Objective: To explore the association of EVT with functional and safety outcomes among patients with ASPECTS of 0 to 2 scored with noncontrast computed tomography. Design, Setting, and Participants: This cohort study used data from an ongoing, prospective, observational, nationwide registry including all patients treated at 38 stroke centers in China with an occlusion in the internal carotid artery or M1 or M2 segment of the middle cerebral artery within 24 hours of witnessed symptom onset. Patients with ASPECTS of 0 to 2 between November 1, 2021, and February 8, 2023, were included in analysis. Data were analyzed October to November 2023. Exposures: EVT vs standard medical treatment (SMT). Main Outcomes and Measures: The primary outcome was favorable functional outcome, defined as modified Rankin Scale score (mRS) of 0 to 3, at 90 days. Safety outcomes included symptomatic intracerebral hemorrhage (sICH) within 48 hours and mortality at 90 days. Results: A total of 245 patients (median [IQR] age, 71 [63-78] years; 118 [48%] women) with ASPECTS of 0 to 2 were included, of whom 111 patients (45.1%) received SMT and 135 patients (54.9%) received EVT. The EVT group had significantly greater odds of favorable functional outcome at 90 days than the SMT group (30 patients [22.2%] vs 11 patients [9.9%]; P = .01; adjusted odds ratio [aOR], 3.07 [95% CI, 1.29-7.31]; P = .01). Patients in the EVT group, compared with the SMT group, had significantly greater odds of any ICH (56 patients [41.5%] vs 16 patients [11.4%]; P < .001; aOR, 4.27 [95% CI, 2.19-8.35]; P < .001) and sICH (24 patients [17.8%] vs 1 patient [0.9%]; P < .001; aOR, 23.07 [95% CI, 2.99-177.79]; P = .003) within 48 hours. There were no differences between groups for 90-day mortality (80 patients [59.3%] vs 59 patients [53.2%]; P = .34; aOR, 1.38 [95% CI, 0.77-2.47]; P = .28). The results remained robust in the propensity score-matched analysis. Conclusions and Relevance: In this cohort study of patients with very low ASPECTS based on NCCT within 24 hours of stroke onset, those treated with EVT had higher odds of a favorable functional outcome compared with those who received SMT. Randomized clinical trials are needed to assess these findings.


Asunto(s)
Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Humanos , Femenino , Masculino , Procedimientos Endovasculares/métodos , Anciano , Persona de Mediana Edad , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/mortalidad , Accidente Cerebrovascular Isquémico/cirugía , Estudios Prospectivos , Resultado del Tratamiento , Sistema de Registros , China/epidemiología , Tomografía Computarizada por Rayos X , Estudios de Cohortes
5.
Heliyon ; 10(9): e30394, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720759

RESUMEN

Introduction: CoronaVac, an inactivated vaccine developed by Sinovac Life Sciences, has been widely used for protection against Coronavirus Disease 2019 (COVID-19). This study investigates its effect on the HIV reservoir and T cell repertoires in people living with HIV (PLWHs). Methods: Blood samples were collected from fifteen PLWHs who were administered at least two doses of CoronaVac between April 2021 and February 2022. The levels of cell-associated HIV RNA (CA HIV RNA) and HIV DNA, as well as the T cell receptor (TCR) repertoire profiles, TCR clustering and TCRß annotation, were studied. Results: A significant increase was observed in CA HIV RNA at 2 weeks (431.5 ± 164.2 copies/106 cells, P = 0.039) and 12 weeks (330.2 ± 105.9 copies/106 cells, P = 0.019) after the second dose, when compared to the baseline (0 weeks) (73.6 ± 23.7 copies/106 cells). Various diversity indices of the TCRß repertoire, including Shannon index, Pielou's evenness index, and Hvj Index, revealed a slight increase (P < 0.05) following CoronaVac vaccination. The proportion of overlapping TCRß clonotypes increased from baseline (31.9 %) to 2 weeks (32.5 %) and 12 weeks (40.4 %) after the second dose. We also found that the breadth and depth of COVID-19-specific T cells increased from baseline (0.003 and 0.0035) to 12 weeks (0.0066 and 0.0058) post the second dose. Conclusions: Our study demonstrated an initial increase in HIV reservoir and TCR repertoire diversity, as well as an expansion in the depth and breadth of COVID-19-specific T-cell clones among CoronaVac-vaccinated PLWHs. These findings provide important insights into the effects of COVID-19 vaccination in PLWHs.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38719187

RESUMEN

Over one year, two KPC-producing and two non-KPC-producing Klebsiella pneumoniae strains were isolated from a patient. Genome and DNA hybridization analyses revealed the first three strains as a clonal lineage, with carbapenem resistance changes due to a Tn2-like transposon on an IncR/IncFII plasmid. The fourth strain, carrying three plasmids, caused a lethal infection and represented a different lineage. All strains belonged to the ST11-SL47-OL101 type. This study highlights the Tn2-like transposon's role in carbapenemase gene spread and the importance of distinguishing between bacterial colonization and infection.

7.
Virus Evol ; 10(1): veae020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562953

RESUMEN

Despite extensive scientific efforts directed toward the evolutionary trajectory of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans at the beginning of the COVID-19 epidemic, it remains unclear how the virus jumped into and evolved in humans so far. Herein, we recruited almost all adult coronavirus disease 2019 (COVID-19) cases appeared locally or imported from abroad during the first 8 months of the outbreak in Shanghai. From these patients, SARS-CoV-2 genomes occupying the important phylogenetic positions in the virus phylogeny were recovered. Phylogenetic and mutational landscape analyses of viral genomes recovered here and those collected in and outside of China revealed that all known SARS-CoV-2 variants exhibited the evolutionary continuity despite the co-circulation of multiple lineages during the early period of the epidemic. Various mutations have driven the rapid SARS-CoV-2 diversification, and some of them favor its better adaptation and circulation in humans, which may have determined the waxing and waning of various lineages.

8.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611876

RESUMEN

Although the long-term survival rate for leukemia has made significant progress over the years with the development of chemotherapeutics, patients still suffer from relapse, leading to an unsatisfactory outcome. To discover the new effective anti-leukemia compounds, we synthesized a series of dianilinopyrimidines and evaluated the anti-leukemia activities of those compounds by using leukemia cell lines (HEL, Jurkat, and K562). The results showed that the dianilinopyrimidine analog H-120 predominantly displayed the highest cytotoxic potential in HEL cells. It remarkably induced apoptosis of HEL cells by activating the apoptosis-related proteins (cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase (PARP)), increasing apoptosis protein Bad expression, and decreasing the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL). Furthermore, it induced cell cycle arrest in G2/M; concomitantly, we observed the activation of p53 and a reduction in phosphorylated cell division cycle 25C (p-CDC25C) / Cyclin B1 levels in treated cells. Additionally, the mechanism study revealed that H-120 decreased these phosphorylated signal transducers and activators of transcription 3, rat sarcoma, phosphorylated cellular RAF proto-oncogene serine / threonine kinase, phosphorylated mitogen-activated protein kinase kinase, phosphorylated extracellular signal-regulated kinase, and cellular myelocytomatosis oncogene (p-STAT3, Ras, p-C-Raf, p-MEK, p-MRK, and c-Myc) protein levels in HEL cells. Using the cytoplasmic and nuclear proteins isolation assay, we found for the first time that H-120 can inhibit the activation of STAT3 and c-Myc and block STAT3 phosphorylation and dimerization. Moreover, H-120 treatment effectively inhibited the disease progression of erythroleukemia mice by promoting erythroid differentiation into the maturation of erythrocytes and activating the immune cells. Significantly, H-120 also improved liver function in erythroleukemia mice. Therefore, H-120 may be a potential chemotherapeutic drug for leukemia patients.


Asunto(s)
Leucemia Eritroblástica Aguda , Leucemia , Humanos , Animales , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Fosforilación , Dimerización , Proteínas Serina-Treonina Quinasas , Factor de Transcripción STAT3
9.
Anal Bioanal Chem ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647693

RESUMEN

A highly efficient ratiometric electrochemiluminescence (ECL) immunoassay was explored by bidirectionally regulating the ECL intensity of two luminophors. The immunoassay was conducted in a split-type mode consisting of an ECL detection procedure and a sandwich immunoreaction. The ECL detection was executed using a dual-disk glassy carbon electrode modified with two potential-resolved luminophors (g-C3N4-Ag and Ru-MOF-Ag nanocomposites), and the sandwich immunoreaction using glucose oxidase (GOx)-modified SiO2 nanospheres as labels was carried out in a 96-well plate. The Ag nanoparticles (NPs) acted as bifunctional units both for triggering the resonance energy transfer (RET) with g-C3N4 and for accelerating the electron transfer rate of the Ru-MOF-Ag ECL reaction. When the H2O2 catalyzed by GOx in the 96-well plate was transferred to the dual-disk glass carbon electrode, the doped Ag NPs in the two luminophors could be etched, thus destroying the RET between C3N4 and the accelerated reaction to Ru-MOF, resulting in an opposite trend in the ECL signal outputted from the dual disks. Using the ratio of the two signals for quantification, the constructed immunosensor for a model target, i.e. myoglobin, exhibited a low detection limit of 4.7 × 10-14 g/mL. The ingenious combination of ECL ratiometry, bifunctional Ag NPs, and a split-type strategy effectively reduces environmental and human errors, offering a more precise and sensitive analysis for complex samples.

10.
Am J Bot ; 111(4): e16311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571288

RESUMEN

PREMISE: Previous work searching for sexual dimorphism has largely relied on the comparison of trait mean vectors between sexes in dioecious plants. Whether trait scaling (i.e., the ratio of proportional changes in covarying traits) differs between sexes, along with its functional significance, remains unclear. METHODS: We measured 10 vegetative traits pertaining to carbon, water, and nutrient economics across 337 individuals (157 males and 180 females) of the diocious species Eurya japonica during the fruiting season in eastern China. Piecewise structural equation modeling was employed to reveal the scaling relationships of multiple interacting traits, and multivariate analysis of (co)variance was conducted to test for intersexual differences. RESULTS: There was no sexual dimorphism in terms of trait mean vectors across the 10 vegetative traits in E. japonica. Moreover, most relationships for covarying trait pairs (17 out of 19) exhibited common scaling slopes between sexes. However, the scaling slopes for leaf phosphorus (P) vs. nitrogen (N) differed between sexes, with 5.6- and 3.0-fold increases of P coinciding with a 10-fold increase of N in male and female plants, respectively. CONCLUSIONS: The lower ratio of proportional changes in P vs. N for females likely reflects stronger P limitation for their vegetative growth, as they require greater P investments in fruiting. Therefore, P vs. N scaling can be a key avenue allowing for sex-specific strategic optimization under unequal reproductive requirements. This study uncovers a hidden aspect of secondary sex character in dioecious plants, and highlights the use of trait scaling to understand sex-defined economic strategies.


Asunto(s)
Nitrógeno , Fósforo , Hojas de la Planta , Reproducción , Fósforo/metabolismo , Fósforo/análisis , Nitrógeno/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , China , Cyperaceae/fisiología , Cyperaceae/crecimiento & desarrollo
11.
Neuroradiology ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38671339

RESUMEN

PURPOSE: Previous studies have demonstrated impaired cerebellar function in patients with obstructive sleep apnea (OSA), which is associated with impaired cognition. However, the effects of OSA on resting-state functional connectivity (FC) in the cerebellum has not been determined. The purpose of this study was to investigate resting-state FC of the cerebellar subregions and its relevance to clinical symptoms in patients with OSA. METHODS: Sixty-eight patients with OSA and seventy-two healthy controls (HCs) were included in the study. Eight subregions of the cerebellum were selected as regions of interest, and the FC values were calculated for each subregion with other voxels. A correlation analysis was performed to examine the relationship between clinical and cognitive data. RESULTS: Patients with OSA showed higher FC in specific regions, including the right lobule VI with the right posterior middle temporal gyrus and right angular gyrus, the right Crus I with the bilateral precuneus/left superior parietal lobule, and the right Crus II with the precuneus/right posterior cingulate cortex. Furthermore, the oxygen depletion index was negatively correlated with aberrant FC between the right Crus II and the bilateral precuneus / right posterior cingulate cortex in OSA patients (p = 0.004). CONCLUSION: The cerebellum is functionally lateralized and closely linked to the posterior default mode network. Higher FC is related to cognition, emotion, language, and sleep in OSA. Abnormal FC may offer new neuroimaging evidence and insights for a deeper comprehension of OSA-related alterations.

13.
Phytochem Anal ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639073

RESUMEN

INTRODUCTION: The active constituents in Aurantii Fructus sourced from different regions within Hunan Province exhibit variations, with certain samples demonstrating substandard quality. OBJECTIVES: The aim of this study is to conduct a comparative analysis of the chemical composition and quality of Aurantii Fructus from various sources, establish a robust methodology for quality evaluation, and determine the optimal harvesting period. MATERIALS AND METHODS: The components of Aurantii Fructus were qualitatively analyzed using a non-targeted metabolomics approach. Multivariate statistical analyses were conducted to identify potential markers, enabling qualitative and quantitative evaluation of the quality and optimal harvest period of Aurantii Fructus. RESULTS: Overall, 155 compounds were identified in Aurantii Fructus, with Huangpi exhibiting the highest number of components. Eleven potential markers were selected to assess the quality of Aurantii Fructus. The average content of Huangpi was the highest, indicating a high level of similarity. The samples' overall scores were ordered as follows: Huangpi > Xiangcheng > Choucheng > Daidai. Anren and Changde's Huangpi exhibited high contents, being rich in chemical components, resulting in favorable scores. Similarly, Changde's Xiangcheng displayed significant medicinal value. As the harvest time was delayed, there was an increase in fruit size, accompanied by thinner peels and a continuous decrease in the contents of potential markers. The best harvest period of Aurantii Fructus was within 1 week before and after the Lesser Heat. CONCLUSION: The present study establishes a precise and efficient method for evaluating the quality of Aurantii Fructus, thereby providing more comprehensive insights into its composition. This research lays the foundation for subsequent development and utilization of Aurantii Fructus.

14.
Br J Haematol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632670

RESUMEN

Splenectomy is an effective treatment for immune thrombocytopenia (ITP). The effect of COVID-19 vaccination on splenectomized patients with ITP during the COVID-19 pandemic has not been reported. Therefore, this study aimed to investigate the effect of COVID-19 vaccination on clinical outcomes in these patients. This was a longitudinal study of splenectomized patients with ITP. A total of 191 splenectomized patients were included in this study. After a median follow-up of 114 months, 146 (76.4%) patients had a sustained response to splenectomy. During COVID-19 infection, vaccinated patients showed a lower risk of severe infections (odds ratio [OR], 0.13; 95% confidence interval [CI]: 0.05-0.36; p < 0.001), hospitalization (OR, 0.13; 95% CI, 0.04-0.48; p = 0.002), and ITP exacerbation (OR, 0.16; 95% CI, 0.04-0.67; p = 0.012). These findings indicate that COVID-19 vaccination plays a protective role in splenectomized patients with ITP.

15.
Pharmacology ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643755

RESUMEN

INTRODUCTION: This work was designed to delve into the effects of SKA3 on glycolysis and cisplatin (CDDP) resistance in LUAD cells and to find new possibilities for individualized treatment of LUAD. METHODS: LUAD mRNA expression data from the TCGA database were procured to scrutinize the differential expression patterns of SKA3 in both tumor and normal tissues. GSEA and Pearson correlation analyses were employed to elucidate the impact of SKA3 on signaling pathways within the context of LUAD. In order to discern the upstream regulatory mechanisms, the ChEA and JASPAR databases were utilized to predict the transcription factors and binding sites associated with SKA3. qRT-PCR and Western blot were implemented to assay the mRNA and protein expression levels of SKA3 and TFAP2A. Chromatin immunoprecipitation (ChIP) and dual luciferase assays were performed to solidify the binding relationship between the two. Extracellular acidification rate, glucose consumption, lactate production, and glycolysis-related proteins (HK2, GLUT1, and LDHA) were used to evaluate the level of glycolysis. Cell viability under CDDP treatment was determined utilizing the CCK-8, allowing for the calculation of IC50. The expression levels of SKA3 and TFAP2A proteins were detected by immunohistochemistry (IHC). RESULTS: SKA3 exhibited upregulation in LUAD tissues and cell lines, establishing a direct linkage with glycolysis pathway. Overexpression of SKA3 fostered glycolysis in LUAD, resulting in reduced sensitivity towards CDDP treatment. The upstream transcription factor of SKA3, TFAP2A, was also upregulated in LUAD and could promote SKA3 transcription. Overexpression of TFAP2A also fostered the glycolysis of LUAD. Rescue assays showed that TFAP2A promoted glycolysis in LUAD cells by activating SKA3, reducing the sensitivity of LUAD cells to CDDP. The IHC analysis revealed a positive correlation between high expression of SKA3 and TFAP2A and CDDP resistance. CONCLUSION: In summary, TFAP2A can transcriptionally activate SKA3, promote glycolysis in LUAD, and protect LUAD cells from CDDP treatment, indicating that targeting the TFAP2A/SKA3 axis may become a plausible and pragmatic therapeutic strategy for the clinical governance of LUAD.

16.
Quant Imaging Med Surg ; 14(4): 2927-2937, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617149

RESUMEN

Background: The contrast-enhanced ultrasound Liver Imaging Reporting and Data System (CEUS LI-RADS) is an algorithm for the diagnosis of hepatocellular carcinoma (HCC) in high-risk populations. Previous studies have shown the algorithm to have high specificity and moderate sensitivity. Nevertheless, it is designated for utilization solely with blood pool contrast agents. Sonazoid, a contrast agent that combines blood pools and Kupffer cells properties, has recently gained approval for marketing in an increased number of countries. Enhanced sensitivity in diagnosing HCC may be achieved through the distinctive Kupffer phase (KP) exhibited by Sonazoid. Certain academics have suggested the modified CEUS LI-RADS using Sonazoid. The main criteria of mild and late (≥60 seconds) washout in CEUS LI-RADS LR-5 were replaced by KP (>10 minutes) defects as the primary criteria. The purpose of this research was to evaluate the effectiveness of the modified CEUS LI-RADS using Sonazoid in diagnosing HCC. Methods: Original studies on Sonazoid and CEUS LI-RADS were searched in the PubMed, Embase, Cochrane Library, and Web of Science databases until 13 July 2023, with no restrictions on language. We enrolled studies that applied Sonazoid for CEUS in patients at high risk of HCC and modified CEUS LI-RADS for the diagnosis of intrahepatic nodules. Meta-analyses, evaluations, case studies, correspondences, remarks, and summaries of conferences were excluded. Additionally, studies that fell outside the scope of this study and contained data on the same patients were also excluded. We evaluated the quality of research by employing the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. A bivariate mixed effects model was utilized to conduct a meta-analysis, summarizing the sensitivity and specificity in the diagnosis of HCC. The investigation of potential factors contributing to study heterogeneity was conducted using meta-regression analysis. Results: Out of the 103 studies screened, 6 studies (835 lesions) were included in the final results. Modified CEUS LR-5 exhibited a sensitivity of 0.77 [95% confidence interval (CI): 0.70-0.82; I2=71.98%; P=0.00] and a specificity of 0.88 (95% CI: 0.83-0.92; I2=0.00; P=0.47) for HCC diagnosis, with heterogeneity in sensitivity. The presence of heterogeneity in the study was found to have a significant association with factors such as the study design, the number of image reviewers, the proportion of cirrhosis, the proportion of other non-HCC malignancies (OM) cases, and the type of reference standard (P≤0.05). Conclusions: The modified CEUS LI-RADS LR-5 categorization demonstrates a reasonable level of sensitivity 0.77, but an insufficient level of specificity 0.88 when diagnosing HCC. KP defects cannot be used as a primary feature in the diagnosis of HCC by CEUS LI-RADS, perhaps as an ancillary feature.

17.
BMC Cancer ; 24(1): 474, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622609

RESUMEN

BACKGROUND AND PURPOSE: In recent years, there has been extensive research on the role of exercise as an adjunctive therapy for cancer. However, the potential mechanisms underlying the anti-tumor therapy of exercise in lung cancer remain to be fully elucidated. As such, our study aims to confirm whether exercise-induced elevation of epinephrine can accelerate CD8+ T cell recruitment through modulation of chemokines and thus ultimately inhibit tumor progression. METHOD: C57BL/6 mice were subcutaneously inoculated with Lewis lung cancer cells (LLCs) to establish a subcutaneous tumor model. The tumor mice were randomly divided into different groups to performed a moderate-intensity exercise program on a treadmill for 5 consecutive days a week, 45 min a day. The blood samples and tumor tissues were collected after exercise for IHC, RT-qPCR, ELISA and Western blot. In addition, another group of mice received daily epinephrine treatment for two weeks (0.05 mg/mL, 200 µL i.p.) (EPI, n = 8) to replicate the effects of exercise on tumors in vivo. Lewis lung cancer cells were treated with different concentrations of epinephrine (0, 5, 10, 20 µM) to detect the effect of epinephrine on chemokine levels via ELISA and RT-qPCR. RESULTS: This study reveals that both pre- and post-cancer exercise effectively impede the tumor progression. Exercise led to an increase in EPI levels and the infiltration of CD8+ T cell into the lung tumor. Exercise-induced elevation of EPI is involved in the regulation of Ccl5 and Cxcl10 levels further leading to enhanced CD8+ T cell infiltration and ultimately inhibiting tumor progression. CONCLUSION: Exercise training enhance the anti-tumor immunity of lung cancer individuals. These findings will provide valuable insights for the future application of exercise therapy in clinical practice.


Asunto(s)
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos , Quimiocinas , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/patología , Microambiente Tumoral , Línea Celular Tumoral
18.
J Chem Theory Comput ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656202

RESUMEN

Herein, we have used the "on-the-fly" ring-polymer surface-hopping simulation method with the centroid approximation (RPSH-CA), in combination with the multireference OM2/MRCI electronic structure calculations to study the photoinduced dynamics of a green fluorescent protein (GFP) chromophore analogue in the gas phase, i.e., o-HBI, at 50, 100, and 300 K with 1, 5, 10, and 15 beads (3600 1 ps trajectories). The electronic structure calculations identified five new minimum-energy conical intersection (MECI) structures, which, together with the previous one, play crucial roles in the excited-state decay dynamics of o-HBI. It is also found that the excited-state intramolecular proton transfer (ESIPT) occurs in an ultrafast manner and is completed within 20 fs in all the simulation conditions because there is no barrier associated with this ESIPT process in the S1 state. However, the other excited-state dynamical results are strongly related to the number of beads. At 50 and 100 K, the nuclear quantum effects (NQEs) are very important; therefore, the excited-state dynamical results change significantly with the bead number. For example, the S1 decay time deduced from time-dependent state populations becomes longer as the bead number increases. Nevertheless, an essentially convergent trend is observed when the bead number is close to 10. In contrast, at 300 K, the NQEs become weaker and the above dynamical results converge very quickly even with 1 bead. Most importantly, the NQEs seriously affect the excited-state decay mechanism of o-HBI. At 50 and 100 K, most trajectories decay to the S0 state via perpendicular keto MECIs, whereas, at 300 K, only twisted keto MECIs are responsible for the excited-state decay. The present work not only comprehensively explores the temperature-dependent photoinduced dynamics of o-HBI, but also demonstrates the importance and necessity of NQEs in nonadiabatic dynamics simulations, especially at relatively low temperatures.

19.
Nanotechnology ; 35(28)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38579687

RESUMEN

Oxygen vacancies and heteroatom doping play important role in oxygen reduction activity of metal oxides. Developing efficient modification method is one of the key issues in catalysts research. Room temperature plasma treatment, with the advantages of mild working conditions, no emissions and high efficiency, is a new catalyst modification method developed in recent years. In this work, hydrothermal synthesizedα-MnO2nanorods are treated in NH3plasma at room temperature. In the reducing atmosphere, oxygen vacancies and N doping are achieved simultaneously on the surface. The NH3plasma etched MnO2demonstrate a significant enhanced oxygen reduction activity with half-wave potential of 0.84 V, limiting current density of 6.32 mA cm-2and transferred electrons number of 3.9. The Mg-air battery with N-MnO2display a maximum power density of 76.3 mW cm-2as well as stable discharge performance. This work provides new ideas for preparing efficient and cost-effective method to boost the catalysts activity.

20.
Adv Mater ; : e2402401, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634328

RESUMEN

Quasi-solid-state batteries (QSSBs) are gaining widespread attention as a promising solution to improve battery safety performance. However, the safety improvement and the underlying mechanisms of QSSBs remain elusive. Herein, a novel strategy combining high-safety ethylene carbonate-free liquid electrolyte and in situ polymerization technique is proposed to prepare practical QSSBs. The Ah-level QSSBs with LiNi0.83Co0.11Mn0.06O2 cathode and graphite-silicon anode demonstrate significantly improved safety features without sacrificing electrochemical performance. As evidenced by accelerating rate calorimetry tests, the QSSBs exhibit increased self-heating temperature and onset temperature (T2), and decreased temperature rise rate during thermal runaway (TR). The T2 has a maximum increase of 48.4 °C compared to the conventional liquid batteries. Moreover, the QSSBs do not undergo TR until 180 °C (even 200 °C) during the hot-box tests, presenting significant improvement compared to the liquid batteries that run into TR at 130 °C. Systematic investigations show that the in situ formed polymer skeleton effectively mitigates the exothermic reactions between lithium salts and lithiated anode, retards the oxygen release from cathode, and inhibits crosstalk reactions between cathode and anode at elevated temperatures. The findings offer an innovative solution for practical high-safety QSSBs and open up a new sight for building safer high-energy-density batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA